skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Esho, Iretomiwa"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report wafer characterization of the S-parameters and microwave noise temperature of discrete GaAs and GaN HEMTs over a temperature range of 20 - 300 K. The measured noise temperature (T50) exhibits a dependence on physical temperature that is inconsistent with a constant drain temperature, with Td for the GaAs and GaN devices changing from ~ 2000 K and ~2800 K at room temperature to ~ 700 K and ~ 1800 K at cryogenic temperatures, respectively. The observed temperature dependence is qualitatively consistent with that predicted from a theory of drain noise based on real-space transfer of electrons from the channel to the barrier. 
    more » « less
  2. High electron mobility transistors are widely used as microwave amplifiers owing to their low microwave noise figure. Electronic noise in these devices is typically modeled by noise sources at the gate and drain. While consensus exists regarding the origin of the gate noise, that of drain noise is a topic of debate. Here, we report a theory of drain noise as a type of partition noise arising from real-space transfer of hot electrons from the channel to the barrier. The theory accounts for the magnitude and dependencies of the drain temperature and suggests strategies to realize devices with lower noise figure. 
    more » « less